Synthesis of some New Solvatochromic $\beta(\gamma)$ -Substituted Cyanine Dyes

Ahmed I. M. Koraiem

Chemistry Department, Aswan Faculty of Science, Aswan, Egypt
(Received 30 September 1988; accepted 18 November 1988)

ABSTRACT

New asymmetrical β -substituted dimethine cyanines, β -substituted bis(styryl) cyanines, γ -ketostyryl cyanines and β -substituted aza bis(styryl) cyanines are prepared. The new cyanines were identified by spectral determination and the solvatochromic behaviour of selected cyanines was investigated and their ionization constants determined.

1 INTRODUCTION

Styryl cyanine dyes find extensive application as photosensitizers for silver halide emulsions,¹ textile dyes² and as bactericidal agents.³ Some of these dyes are growth inhibitors to bacteria⁴ and to the mitosis of fertilized sea urchin eggs.⁵ They possess hormonal effects on plant growth.⁶ The mutagenic and developmental effects of styryl and aza analogues of cyanine dyes have been investigated⁷ and also the effect of both analogues on breaking the period of dormancy in cloves of garlic CVS.⁷ The compounds are potent mitodepressive and mutagenic agents and the aza analogues are more effective than the styryl types.^{7,8} The dyes were found to display a structure–activity relationship with regard to cytological effects.

In this present work, some new asymmetrical β -substituted dimethine cyanines, β -substituted bis(styryl), γ -ketostyryl and β -substituted aza bis(styryl) cyanines were prepared, in order to study their spectral and solvatochromic behaviour with respect to their exhibiting possible photosensitization behaviour. The absorption spectra in buffer solution

have been utilized for the determination of the acid dissociation constants for some of the compounds in order to permit selection of a suitable pH for the compounds to be applied as photosensitizers.

2 RESULTS AND DISCUSSION

4-Acetyl-, 4-trifluoroacetyl and 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (2a-2c), starting materials for the synthesis of the desired cyanine dyes, were prepared by fusion of pyrazolone with acetamide. 9 trifluoroacetamide or benzamide, respectively, followed by hydrolysis. The interaction of equimolar amounts of 2a-2c with 2(4)-methyl quaternary salts, such as the 1ethyl-2-methylpyridinium-2-yl salt, the 1-ethyl-2-methyl quinolinium-2-yl salt and the 1-ethyl 4-methyl pyridinium-4-yl salt in the presence of piperidine as catalyst, afforded the corresponding asymmetrical β substituted dimethine cyanines 3a-3e (Scheme 1). The structure of these compounds was established by microanalyses and by IR and ¹H-NMR data.

The asymmetrical β -substituted dimethine cyanines 3a-3e were reddishviolet to intense violet and were soluble in polar organic solvents and in conc. sulphuric acid, from which iodine was liberated on heating. They exhibited a strong green fluorescence in solution, depending on the substituents, and their ethanolic solutions were yellow in acidic medium,

- c $R = CH_3$, A = 1-ethylpyridinium-4-yl salt;
- **d** $R = CF_3$, A = 1-ethylquinolinium-2-yl salt;
- $R = C_6H_5$, A = 1-ethylquinolinium-2-yl salt.

Scheme 1

turning violet on making alkaline. This reversible colour change indicates their possible use as acid-base indicators in protometric titrations.

The visible absorption spectra of **3a–3e** in 95% ethanol showed several bands, the position and molar extinction coefficients of which were influenced by the nature of the heterocyclic quaternary residue (A). Thus, compound **3a** (R = CH₃, A = 1-ethylpyridinium-2-yl salt) had λ_{max} at 485 and 590 nm (ε_{max} 2120, 860 mol⁻¹ cm²), whilst replacing the 1-ethylquinolinium-2-yl salt moiety for A (**2b**) resulted in an increase in the number and intensity of the absorption bands (λ_{max} 480, 508 and 555 nm; ε_{max} 6360, 7200, 5340 mol⁻¹ cm²). Absorption maxima, λ_{max} , were also influenced by changes in the β -substituents (R). Thus, where R = CF₃ (compound **3d**) a blue shift of 33–80 nm in the CT band occurred (R = CF₃, A = 1-ethylquinolinium-2-yl salt, λ_{max} 365 and 475 nm, ε_{max} 9120 and 16 000 mol⁻¹ cm²), this shift being attributable to the electron-accepting character of the fluorine atoms. Where R = C₆H₅ a slight blue shift of 28–55 nm (**3e** R = C₆H₅, A = 1-ethylquinolinium-2-yl salt), λ_{max} 480 and 500 nm, ε_{max} 26 700 and 26 580 mol⁻¹ cm²) compared with **3b** (Table 1).

In previous investigations, interaction of 2a with equimolar amounts of benzaldehyde derivatives afforded the corresponding 4-cinnamoyl-3-methyl-1-phenyl-2-pyrazolin-5-one derivatives (4a-4e). Interaction of equimolar amounts of 4a-4e with the 1-ethylquinolinium-2-yl salt in the presence of piperidine as catalyst afforded the corresponding asymmetrical β -substituted bis(styryl) cyanines 5a-5e (Scheme 2). The structures of compounds 5a-5e were assigned on the basis of microanalyses and spectral data.

$$\begin{array}{c} Ph-N-N \\ O = -CH_3 \\ Aa-4e \end{array} + H_3C - \begin{array}{c} + \\ V = -CH_3 \\ \hline Ph-N-N \\ O = -CH_3 \\ \hline Ph-N-N \\ O = -CH_3 \\ \hline Et \\ \hline Sa-5e \end{array}$$

 $R = H(a), p\text{-OCH}_3(b), p\text{-N(CH}_3)_2(c), p\text{-NO}_2(d), p\text{-OH}(e).$

TABLE 1 Characterization Data for β -Substituted Dimethine Cyanine Dyes (3a-3d) and Their β -Bis(styryl) Derivatives (5a-5e)

3a 135 45 CH ₃ C ₂ 0H ₂ 2N ₃ OI (447) Reddish-violet crystals 537 49 94 485 3b 125 67 CH ₃ C ₂ 4H ₂ A ₃ OI (497) Intense volet crystals 537.53 (590) (953) (950) (953) (950) 94 485 3c 165 48 CH ₃ C ₂ 4H ₂ A ₃ N ₃ OI (497) Intense volet crystals 537.73 (590) (953) (870	Compd. M.p.)	M.p.	Yield (%)	×	Molecular formula (M. w.t)	Nature of products	Ar. Ca	Analysis (%) Calcd (Found)	%) md)	Ab	Absorption spectra
135 45 CH ₃ C ₂₀ H ₂₂ N ₃ OI (447) Reddish-violet crystals (33-75) (590 (9-5) 590 (125 of CH ₃) C ₂₄ H ₂₄ N ₃ OI (497) Intense violet crystals (33-76) (590 (9-5) 590 (165 of CH ₃) C ₂₄ H ₂₄ N ₃ OI (447) Brownish-violet crystals (58-0) (5-0) (8-7) 508 (125 of Ch ₃) C ₂₄ H ₂₁ N ₃ OI (589) Intense violet crystals (52-5) (3-9) (7-8) 470 (155 of Ch ₃) C ₂₄ H ₂₁ N ₃ OI (589) Intense violet crystals (52-5) (3-9) (7-8) 470 (155 of Ch ₃) C ₃ H ₃ N ₃ OI (585) Intense violet crystals (52-5) (3-9) (7-8) 470 (155 of Ch ₃) C ₃ H ₃ N ₃ OI (585) Intense violet crystals (62-6) (4-9) (7-2) (6-9) (155 of Ch ₃) C ₃ H ₃ N ₃ OI (610) Intense violet crystals (62-6) (4-9) (6-9) (6-9) (155 of Ch ₃) C ₃ H ₃ N ₃ OI (610) Intense violet crystals (62-6) (4-9) (6-9) (6-9) (155 of Ch ₃) C ₃ H ₃ N ₃ O ₂ I (601) Intense violet crystals (61-9) (4-75) (7-0) 500 (159 of Ch ₃) (7-10) 500							C	Н	>	, max (nm)	$\frac{\varepsilon_{\max}}{(mol^{-1}cm^2)}$
125 67 CH ₃ C ₂₄ H ₂₄ N ₃ OI (497) Internse violet crystals 57-95 48 845 480 555 560 670	3a	135	45	CH ₃	C ₂₀ H ₂₂ N ₃ OI (447)	Reddish-violet crystals	53.7	l	9.4	485	(2120)
125 67 CH ₃ C ₂₄ H ₂₄ N ₃ OI (497) Intense violet crystals 57-95 4.8 8-45 480 165 48 CH ₃ C ₂₀ H ₂₂ N ₃ OI (447) Brownish-violet crystals 53-7 4-9 9-4 300 112 70 CF ₃ C ₂₄ H ₂₁ N ₃ OIF ₃ (889-8) Intense violet crystals 52-5 (3-9) (7-8) 475 100 65 C ₆ H ₅ C ₂₄ H ₂₁ N ₃ OIF ₃ (889-8) Intense violet crystals 62-5 4-65 7-5 480 115 55 H C ₃₁ H ₂₈ N ₃ OI (585) Intense violet crystals 62-6 4-8 7-2 390 115 55 H C ₃₁ H ₂₈ N ₃ OI (615) Intense violet crystals 62-6 4-8 7-2 390 145 45 p-OCH ₃ C ₃₂ H ₃₀ N ₃ O ₂ I (615) Intense violet crystals 62-6 (4-95) (6-9 4-8 415 145 45 p-NO ₂ C ₃₁ H ₂₂ N ₃ O ₂ I (601) Intense violet crystals 63-1 6-9 4-9 6-8 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>(53.75)</th><th></th><th>(6.5)</th><th>290</th><th>(860)</th></td<>							(53.75)		(6.5)	290	(860)
165 48 CH ₃ C ₂₀ H ₂₂ N ₃ OI (447) Brownish-violet crystals 53.7 4.9 65.55 112 70 CF ₃ C ₂₄ H ₂₁ N ₃ OIF ₃ (589-8) Intense violet crystals 52.4 38 7-6 470 110 70 CF ₃ C ₂₄ H ₂₁ N ₃ OII (559) Intense violet crystals 62.25 4-65 7-5 480 115 55 H C ₃₁ H ₂₈ N ₃ OI (585) Intense violet crystals 62.24 4-8 7-7 390 115 55 H C ₃₁ H ₂₈ N ₃ OI (685) Intense violet crystals 63-6 4-8 7-2 390 152 63 p-OCH ₃ C ₃₂ H ₃₀ N ₃ O ₂ I (615) Intense violet crystals 63-1 4-9 6-8 415 145 45 p-NOCH ₃ C ₃₃ H ₂ , N ₄ O ₁ (630) Intense violet crystals 63-1 (5-9) (4-95) (5-9) 485 154 70 p-OH C ₃₁ H ₂ , N ₄ O ₂ I (601) Intense violet crystals 63-1 67-9 67-9 67-9 515	3 p	125	<i>L</i> 9	CH_3	$C_{24}H_{24}N_3OI$ (497)	Intense violet crystals	57.95		8.45	480	(6360)
165 48 CH ₃ C ₂₀ H ₂₂ N ₃ OI (447) Brownish-violet crystals 53.7 4.9 9-4 390 112 70 CF ₃ C ₂₄ H ₂₁ N ₃ OIF ₃ (589-8) Intense violet crystals 62.5 4.65 7.6 365 100 65 C ₆ H ₅ C ₂₉ H ₂₆ N ₃ OI (559) Intense violet crystals 62.25 4.65 7.5 480 115 55 H C ₃₁ H ₂₈ N ₃ OI (585) Intense violet crystals 63-6 4.8 7.2 390 152 63 p-OCH ₃ C ₃₂ H ₃₀ N ₃ O ₂ I (615) Intense violet crystals 63-6 4.8 7.2 390 145 45 p-NCH ₃ C ₃₂ H ₃₀ N ₃ O ₂ I (615) Intense violet crystals 63-1 49-9 68-8 415 155 68 p-NCH ₃ C ₃₁ H ₂ n ₃ N ₄ OI (628) Intense violet crystals 63-1 64-9 49-9 68-8 175 68 p-NO ₂ C ₃₁ H ₂ n ₃ N ₄ O ₁ (601) Intense violet crystals 69-0 47-7 70 380							(28.0)		(8.7)	208	(7200)
165 48 CH ₃ C ₂ 0H ₂ 2N ₃ OI (447) Brownish-volet crystals 53-7 49 94 390 112 70 CF ₃ C ₂ 4H ₂ 1N ₃ OI (589-8) Intense violet crystals 52-4 38 7-6 365 100 65 C ₆ H ₅ C ₂ 9H ₂ 6N ₃ OI (559) Intense violet crystals 62-25 4-65 7-5 480 115 55 H C ₃ 1H ₂ 8N ₃ OI (585) Intense violet crystals 63-6 4-8 7-2 390 152 63 p-OCH ₃ C ₃ 2H ₃ 0N ₃ O ₂ I (615) Intense violet crystals 62-6 4-9 68 415 152 63 p-OCH ₃ C ₃ 1H ₂ 3N ₃ O ₂ I (615) Intense violet crystals 63-1 6-9 49 68 415 155 69 p-NCH ₃ C ₃ 1H ₂ 3N ₃ O ₂ I (601) Intense violet crystals 63-1 6-9 49 68 415 154 70 p-OH C ₃ 1H ₂ 3N ₃ O ₂ I (601) Intense violet crystals 69-9 4-7 70 500 154 70 p-OH C ₃ 1H ₂ 3N ₃ O ₂ I (601) Intense violet cr										555	(5340)
112 70 CF ₃ C ₂₄ H ₂₁ N ₃ OIF ₃ (589-8) Intense violet crystals (52.5) (5.4) (5.4) 470 470 100 65 C ₆ H ₅ C ₂₀ H ₂₆ N ₃ OI (589) Intense violet crystals 62.25 4.65 7.5 480 115 55 H C ₃₁ H ₂₈ N ₃ OI (585) Intense violet crystals 62.4 4.8 7.75 500 152 63 p-OCH ₃ C ₃₂ H ₃₀ N ₃ OI (585) Intense violet crystals 62.4 4.9 68 415 152 63 p-OCH ₃ C ₃₂ H ₃₀ N ₄ OI (628) Intense violet crystals 63.1 5.25 8.9 515 175 68 p-NCC ₃ C ₃₁ H ₂ N ₃ O ₂ I (601) Intense violet crystals 63.1 5.25 8.9 515 174 70 p-OH C ₃₁ H ₂ N ₃ O ₂ I (601) Intense violet crystals 69.05 4.7 7.0 380 154 70 p-OH C ₃₁ H ₂ N ₃ O ₂ I (601) Intense violet crystals 61.9 4.7 7.0 380	સ	165	48	CH_3	$C_{20}H_{22}N_3OI$ (447)	Brownish-violet crystals	53-7	4.9	9.4	390	(6 040)
112 70 CF ₃ $C_{24}H_{21}N_{3}OIF_{3}$ (589-8) Intense violet crystals (52.5) (3-9) (7-8) 475 (100) 65 $C_{6}H_{5}$ $C_{29}H_{26}N_{3}OI$ (559) Intense violet crystals (52.5) (3-9) (7-8) 475 (290 -2.9							(53.8)	(5·1)	(9.6)	470	(008 9)
115 55 G ₆ H ₅ C ₂₉ H ₂₆ N ₃ OI (559) Intense violet crystals 62·25 (3·9) (7·8) 475 115 55 H C ₃₁ H ₂₈ N ₃ OI (585) Intense violet crystals (62·4) (4·8) (7·75) 500 152 63 p-OCH ₃ C ₃₂ H ₃₀ N ₃ O ₂ I (615) Intense violet crystals (62·6) (4·95) (6·9) 438 145 45 p-N(CH ₃) ₂ C ₃₃ H ₃₃ N ₄ OI (628) Intense violet crystals (63·1) (5·4) (9·1) 555 175 68 p-NO ₂ C ₃₁ H ₂₃ N ₃ O ₂ I (601) Intense violet crystals (63·1) (5·4) (9·1) 555 174 70 p-OH C ₃₁ H ₂₈ N ₃ O ₂ I (601) Intense violet crystals (69·9 4·77) (7·0) 500	æ	112	70	CF_3	$C_{24}H_{21}N_3OIF_3$ (589·8)	Intense violet crystals	52.4	3.8	9./	365	(9 120)
100 65 C ₆ H ₅ C ₂₉ H ₂ ₆ N ₃ OI (559) Intense violet crystals (62-4) (48) (7-75) 500 (62-4) (48) (7-75) 500 (62-4) (48) (7-75) 500 (62-4) (48) (7-75) 500 (62-4) (48) (7-75) 500 (62-4) (48) (7-75) 500 (62-4) (48) (7-75) 500 (62-4) (48) (7-75) 500 (62-4) (62-4							(52.5)	(3.9)	(7·8)	475	(16 000)
115 55 H C ₃₁ H ₂₈ N ₃ OI (585) Intense violet crystals 63.6 4.8 7.2 390 (63.7) (4.9) (7.75) 500 (63.7) (4.9) (7.2) (63.1) (63.8) 62.4 4.9 6.8 415 (63.1) (6	સ	200	65	C_6H_5	C ₂₉ H ₂₆ N ₃ OI (559)	Intense violet crystals	62.25	4.65	7.5	480	(26 700)
115 55 H C ₃₁ H ₂₈ N ₃ OI (585) Intense violet crystals 63-6 4-8 7-2 390 152 63 p-OCH ₃ C ₃₂ H ₃₀ N ₃ O ₂ I (615) Intense violet crystals 62-4 4-9 6-8 415 145 45 p-N(CH ₃) ₂ C ₃₃ H ₃₀ N ₄ OI (628) Intense violet crystals (63-1 5-2) 8-9 515 175 68 p-NO ₂ C ₃₁ H ₂ ,N ₄ O ₃ I (601) Intense violet crystals (59-3) (4-4) (9-0) 580 154 70 p-OH C ₃₁ H ₂₈ N ₃ O ₂ I (601) Intense violet crystals (62-9) (4-75) (7-0) 500							(62.4)	(4.8)	(7.75)	200	(26 580)
152 63 p -OCH ₃ $C_{32}H_{30}N_3O_2I$ (615) Intense violet crystals 62-4 4-9 6-8 415 (62-6) (4-95) (6-9) 438 145 45 p -N(CH ₃) ₂ $C_{33}H_{33}N_4OI$ (628) Intense violet crystals 63-1 5-25 8-9 515 175 68 p -NO ₂ $C_{31}H_{27}N_4O_3I$ (630) Intense violet crystals 59-05 4-3 8-9 515 154 70 p -OH $C_{31}H_{28}N_3O_2I$ (601) Intense violet crystals 61-9 4-7 7-0 380 154 70 500	5a	115	55	Н	C ₃₁ H ₂₈ N ₃ OI (585)	Intense violet crystals	9.69	4.8	7.2	390	(3 000)
152 63 p -OCH ₃ $C_{32}H_{30}N_3O_2I$ (615) Intense violet crystals (62·6) (4·95) (6·9) 438 415 (62·6) p -OCH ₃ $C_{33}H_{33}N_4OI$ (628) Intense violet crystals (63·1) (5·4) (9·1) 555 154 (63·1) (5·4) (9·1) 555 (63·1) (6.9.1							(63.7)	(4.9)	(7.2)		
	\$	152	63	p -OCH $_3$	$C_{32}H_{30}N_3O_2I$ (615)	Intense violet crystals	62.4	4.9	8.9	415	(5 200)
485 145 45 p-N(CH ₃) ₂ C ₃₃ H ₃₃ N ₄ OI (628) Intense violet crystals 63·1 5·25 8·9 515 175 68 p-NO ₂ C ₃₁ H ₂ ,N ₄ O ₃ I (630) Intense violet crystals 59·05 4·3 8·9 515 154 70 p-OH C ₃₁ H ₂ 8N ₃ O ₂ I (601) Intense violet crystals 61·9 4·7 7·0 380 155 (62·0) (4·75) (7·0) 500							(62.6)	(4.95)	(6.9)	438	(2800)
145 45 p-N(CH ₃) ₂ C ₃₃ H ₃₃ N ₄ OI (628) Intense violet crystals 63·1 5·25 8·9 515 (63·1) (5·4) (9·1) 555 (175 68 p-NO ₂ C ₃₁ H ₂ ,N ₄ O ₃ I (601) Intense violet crystals (59·3) (4·4) (9·0) 580 (62·0) p-OH C ₃₁ H ₂₈ N ₃ O ₂ I (601) Intense violet crystals (62·0) (4·75) (7·0) 500										485	(3820)
145 45 p -N(CH ₃) ₂ $C_{33}H_{33}N_4OI$ (628) Intense violet crystals (63·1) (5·4) (9·1) 555 175 68 p -NO ₂ $C_{31}H_{27}N_4O_3I$ (630) Intense violet crystals (59·3) (4·4) (9·0) 580 154 70 p -OH $C_{31}H_{28}N_3O_2I$ (601) Intense violet crystals (62·0) (4·75) (7·0) 500										545	(2 100)
175 68 p-NO ₂ C ₃₁ H ₂ ,N ₄ O ₃ I (630) Intense violet crystals 59·05 4·3 8·9 515 (59·3) (4·4) (9·0) 580 154 70 p-OH C ₃₁ H ₂ 8N ₃ O ₂ I (601) Intense violet crystals 61·9 4·7 7·0 380 (62·0) (4·75) (7·0) 500	%	145	45	p-N(CH ₃) ₂	C ₃₃ H ₃₃ N ₄ OI (628)	Intense violet crystals	63.1	5.25	6.8	515	(2960)
175 68 p -NO ₂ $C_{31}H_2 \gamma N_4 O_3 I$ (630) Intense violet crystals 59·05 4·3 8·9 515 (59·3) (4·4) (9·0) 580 (59·3) p -OH $C_{31}H_{28}N_3 O_2 I$ (601) Intense violet crystals (61·9 4·7 7·0 380 (62·0) (4·75) (7·0) 500							(63.1)	(5:4)	(9·1)	555	(3 800)
(59.3) (4.4) (9.0) 154 70 p -OH $C_{31}H_{28}N_3O_2I$ (601) Intense violet crystals 61.9 4.7 7.0 (62.0) (4.75) (7.0)	5 2	175	89	$p-NO_2$	$C_{31}H_{27}N_4O_3I$ (630)	Intense violet crystals	59.05	4:3	6.8	515	(11 760)
154 70 p -OH $C_{31}H_{28}N_3O_2I$ (601) Intense violet crystals 61.9 4.7 7.0 (62.0) (4.75) (7.0)							(59.3)	(4.4)	(0-6)	580	(0096)
(62.0) (4.75) (7.0)	æ	154	70	hO-d	$C_{31}H_{28}N_3O_2I$ (601)	Intense violet crystals	61.9	4.7	<u>ا</u> ب	380	(3240)
							(62.0)	(4.75)	(7.0)	200	(4 600)

These asymmetrical β -substituted bis(styryl) cyanines had a characteristic intense violet colour and were soluble in polar organic solvents and in conc. sulphuric acid, from which iodine was liberated on heating. They exhibited strong green fluorescence in solution. An unusual feature of the bis(styryl) cyanines substituted by a methoxy or hydroxy group was the formation of a red colour in alkali and an orange colour in acid, these colours being interchangeable, with discharge at pH 3·2.

The position and molar estimation coefficients of the $\lambda_{\rm max}$ of **5a-5e** in 95% ethanol were influenced by the nature of the aryl substituent (R). Thus **5a** (R = H) had $\lambda_{\rm max}$ at 390 nm ($\varepsilon_{\rm max}$ 3000 mol⁻¹ cm²). Substitution by the electron-donating substituent, e.g. p-OCH₃, p-N(CH₃)₂ and p-OH components (**5b**, **5c**, and **5e**) for R increased the number and intensity of the bands (Table 1). Introduction of the electron-withdrawing p-NO₂ group caused a slight blue shift of 10 nm relative to that of **5a**.

Selective oxidation of 2a with SeO_2 in ethanol¹⁰ gave the corresponding 3-methyl-1-phenyl-2-pyrazolin-5-one-4-glycosal (6) which on condensation with a 2(4)-methyl quaternary salt gave the γ -ketostyryl cyanines 7a-7c (Scheme 3). The structures of these compounds was confirmed by microanalysis and by IR and ¹H-NMR data.

The asymmetrical γ -ketostyryl cyanines **7a–7c** had colours ranging from reddish-violet to intense violet and were soluble in polar organic solvents, exhibiting an intense green fluorescence. They were soluble in conc. sulphuric acid from which iodine was liberated on heating. Their ethanolic solution gave a yellow colour in acidic medium which turned violet on basification.

$$2a \xrightarrow{SeO_2} H_3C \xrightarrow{C} C-CHO \xrightarrow{H_3C} \xrightarrow{N} \stackrel{I}{\stackrel{I}{\stackrel{\Gamma}{\longrightarrow}}} \stackrel{A}{\stackrel{Ph}{\longrightarrow}} O$$

$$H_3C \xrightarrow{N} \stackrel{O}{\stackrel{I}{\longrightarrow}} C-CH = CH \xrightarrow{Ph} \stackrel{A}{\stackrel{I}{\longrightarrow}} \stackrel{A}{\stackrel{I}{\longrightarrow}} O$$

$$H_3C \xrightarrow{N} \stackrel{O}{\stackrel{I}{\longrightarrow}} C-CH = CH \xrightarrow{N} \stackrel{A}{\stackrel{I}{\longrightarrow}} O$$

$$Ph$$

$$7a-7c$$

A = 1-ethylpyridinium-2-yl salt(**a**), 1-ethylquinolinium-2-yl salt(**b**), 1-ethylpyridinium-4-yl salt(**c**)

The absorption bands in the electronic spectra of **7a–7c** in 95% ethanol also underwent bathochromic or hypsochromic shifts depending on the nature of the heterocyclic quaternary residue (A), the bands becoming more intense and showing a strong red shift with increase in the conjugation of A. Thus, **7a** (A = 1-ethylpyridinium-2-yl salt) had λ_{max} at 370 and 475 nm (ε_{max} 8800 and 7760 mol⁻¹ cm²). Replacing the pyridyl nucleus by quinoline (compound **7b**) caused a strong red shift of 33 nm (λ_{max} 375 and 508 nm; ε_{max} 4600 and 9800 mol⁻¹ cm²). A similar behaviour was also shown by **7c** (A = 1-ethylpyridinium-4-yl salt), λ_{max} 365 and 490 nm (ε_{max} 5000 and 6400 mol⁻¹ cm²) (Table 2).

Compound 6 reacted with primary aromatic amines to give the corresponding 4-glycosylidene arylamine derivatives (8a–8d). The interaction of equimolar amounts of 8a–8d with a 1-ethylquinolinium-2-yl salt in the presence of piperidine as catalyst afforded the corresponding asymmetrical β -substituted aza bis(styryl) cyanines 9a–9d (Scheme 4) which had similar colour to the bis(styryl) cyanines 5a–5e. Their ethanolic solutions were violet with a blue fluorescence in alkali, changing to yellow with a green fluorescence on acidification.

As with **5a–5e**, the λ_{max} of **9a–9e** in 95% ethanol also underwent a bathochromic or hypsochromic shift depending on the nature of the substituent R, e.g. λ_{max} at 510, 550 and 580 (sh) nm (ε_{max} 10 000, 8320 and 6000 mol⁻¹ cm²) for **9a** (R = H); λ_{max} 465, 500, 530 and 640 nm (ε_{max} 13 360, 11 520, 9200 and 550 mol⁻¹ cm²) for **9b** (R = p-OCH₃); λ_{max} 365, 515, 550, 570 and 690 nm (ε_{max} 8200, 7320, 6840, 5500 and 1320 mol⁻¹ cm²) for **9c** (R = p-NO₂); and λ_{max} 440, 523 (sh) and 565 nm (ε_{max} 6800, 9120 and

R = H(a), p-OCH₃(b), p-NO₂(c), p-OH(d) Scheme 4 $16\,600\,\mathrm{mol}^{-1}\,\mathrm{cm}^2$) for $9d\,(R=p\text{-OH})$ (Table 2). Comparison of the spectra of 5a-5e and 9a-9d shows that the aza bis(styryl) cyanines 9a-9d show red shifts with more intense absorption compared with 5a-5e.

The charge transfer band exhibits lower excitation energy in protic solvents such as ethanol, isobutanol and CHCl₃ relative to aprotic solvents such as DMF (Table 3). This is relatable to the differences in stabilization of both the ground and excited states by hydrogen bonding interaction with the protic solvents, since there is no difference in the polarity of the ground and excited states of the compounds.

The visible bands observed in the spectra of selected dyes (3a-3c, 5b-5e, 7b, 9a-9d) in ethanol (Table 3) can be interpreted as evidence of the possible existence of these compounds in a mesomeric equilibrium. Thus, the shorterand longer-wavelength bands can be ascribed to an intramolecular CT transition occurring within the two mesomeric structures. This is confirmed by solvent effects on the visible spectra of the compounds. Generally, it is observed that increase in solvent polarity in the sequence $CHCl_3 \rightarrow ethanol \rightarrow isobutanol \rightarrow DMF$ results in an increase in the extinction of the longer-wavelength band. Such mesomeric structures can be represented as shown in Scheme 5. Evidence for the existence of these compounds in mesomeric equilibrium is provided by the well-defined isobestic point observed on studying the dependence of the visible spectra of the compounds in ethanol with changes in the water content (Fig. 1).

However, the unexpected blue shift observed in the λ_{max} at the longer-wavelength visible band, as well as the lower extinction on increasing the water content in ethanol, can be mainly ascribed to the possible interaction of water molecules with the lone pair of electrons of the OH group resulting

Characte	Characterization Data	Data	for 7-Ketostı	for γ -Ketostryryl Cyanines (7a-7c), 4-Glycosylıdene Derivatives (8a-8d) and β -Substituted Aza Bis(styryl) Cyanines (9a-9d)	cosylidene Derivatives (8a-84 (9a-9d)	d) and β .	-Substiti	uted Az	a Bis(st)	ryl) Cyanines
Compd. M.p. Y	M.p.	Yield (%)	R	Molecular formula (M. wt)	Nature of products	Ca	Analysis (%) Calcd (Found)	%) nd)	AA	Absorption spectra
						C	Н	N	, hax (nm)	$\hat{\Lambda}_{\text{max}}$ ϵ_{max} (nm) $(mol^{-1}cm^2)$
7a	157	72	memorania (m. 16. m.) de descriptura de la companya	C ₂₀ H ₂₂ N ₃ O ₂ I (463)	Reddish-violet crystals	51.8	4.75	9.1	370	(8 800)
J.	178	75	ş Şidanlarını,	$C_{24}H_{24}N_3O_2I$ (513)	Intense violet crystals	(52·0) 56·1	(4.9) (4.7)	(5. 5)	375	(4 600)
7c	160	65	- October	$C_{20}H_{12}N_3O_2I$ (463)	Brownish-violet crystals	(36.3) 51.8 (51.9)	(4.8) (8.3) 4.75 9.1 (4.85) (9.15)	(8:3) 9:1 (9:15)	365 490	(5 800) (5 000) (6 400)
88 8	150-152 45	45	н	$C_{18}H_{15}N_3O_2$ (305)	Deep brown needles	70.8	4.9	13.8	·	1
98	145	48	<i>p</i> -0CH ₃	C ₁₉ H ₁₇ N ₃ O ₃ (335)	Pale violet crystals	(88.2) (5.2) (68.2) (5.2)	(5.2)	(13.9) 12.5 (12.7)		

သွ	195–197 57	57	p-NO ₂	$C_{18}H_{14}N_4O_4$ (350)	Brownish violet crystals	61.7	4.0	160	**************************************	
P8	180	52	HO- <i>d</i>	C ₁₈ H ₁₅ N ₃ O ₃ (321)	Intense violet needles	(67.3) (67.4)	(4·1) 4·7 (4·8)	(18·1) 13·1 (13·3)	Statement Statem	1 1 1
9a	991	40	I	C ₃₀ H ₂₇ N ₄ OI (586)	Reddish-violet needles		4·6 (4·8)	9.6 (6.7)	510 550	(10 000)
9 6	190	45	р-ОСН3	C ₃₁ H ₂₉ N ₄ O ₂ I (616)	Intense violet crystals	60·4 4·7 (60·55) (4·9)	4.7	11:4 (11:45)	200 500 530	(13 360) (11 520) (9 200)
3 6	172	52	p-NO ₂	C ₃₀ H ₂₆ N ₅ O ₃ I (531)	Brownish-violet needles	57·05 (57·2)	4:1	11.1	640 365 515 550	(8 200) (7 320) (6 840)
P 6	148–149 50	20	но- <i>d</i>	C ₃₀ H ₂₇ N ₄ O ₂ I (602)	Intense violet crystals	59-8 4-5 (59-95) (4-6)	4.5 (4.6)	9.3 (9.45)	570 690 440 523 565	(5 500) (1 320) (6 800) (9 120) (16 600)

Compd	Ethanol	Isobutanol	$CHCl_3$	DMF
no.	$\lambda(\varepsilon)$	$\lambda(arepsilon)$	$\hat{\lambda}(arepsilon)$	$\lambda(\varepsilon)$
3a	480 (6 300)	480 (5 800)	480 (3 460)	
	505 (7 180)	510 (6 960)	508 (3 840)	505 (5 800)
	555 (6 320)	555 (4740)	559 (2000)	557 (3 900)
3b	475 (1 600)	375 (6 800)	405 (6 820)	385 (5 440)
	_	488 (9 020)	475 (4 520)	
		Milliones	507 (4 300)	505 (9 040)
3c	_	393 (5 960)	400 (9 520)	390 (5 750)
	480 (26 700)	475 (6 720)	485 (12 280)	475 (7600)
	500 (26 580)	505 (9 000)	510 (12 760)	505 (9 000)
5b	415 (4 200)	440 (3 200)	425 (8 760)	415 (9 120)
	435 (5 780)	455 (3 000)	452 (9 600)	440 (9 520)
	485 (3 840)	488 (3 100)	482 (9 840)	510 (2 560)
	545 (2 100)	555 (740)	560 (1 880)	550 (2000)
5c	515 (2960)	518 (9 540)	520 (13 200)	522 (16 200)
	555 (3 780)	562 (11 940)	560 (18 000)	564 (22 260)
5d	505 (11 520)	485 (14960)	493 (15 040)	497 (19 600)
		520 (15 040)	526 (15 600)	520 (19 040)
	580 (9 600)	585 (14 000)	583 (10720)	560 (16 080)
		***************************************		604 (14 320)
5e	380 (3 240)	395 (3 900)	420 (4040)	395 (7800)
	500 (4 620)	505 (4700)	500 (3 760)	508 (8 880)
7b	375 (4 600)	380 (2 520)	410 (7 520)	390 (7 440)
	_	· ·	490 (6 000)	-
	505 (9 780)	510 (5 480)	515 (5480)	510 (13 920)
			593 (2400)	allertura.
9a	510 (9 960)	518 (13 320)	510 (6 600)	515 (15 420)
	550 (8 320)	560 (11 200)	550 (6 180)	555 (13 920)
	580 (6 000)	***************************************	590 (4 600)	590 (96 000)
9b	465 (13 400)	Name and American	_	400 (11 940)
	500 (11 520)	520 (13 520)	515 (12 200)	515 (19920)
	530 (9 200)	560 (11 160)	555 (12400)	553 (18 660)
		-	588 (10 680)	590 (14 280)
	640 (2 240)	680 (1 640)	690 (1920)	695 (3 300)
9c	525 (7 300)	523 (8 000)	480 (8 600)	380 (11 680)
	550 (6 840)	560 (7 360)	522 (10 000)	520 (10 400)
	583 (5 400)	. ,	558 (10 280)	590 (8 000)
	690 (1 340)	at distance and	590 (8 520)	,
9d	440 (6 800)	445 (7600)		whitemake
	523 (9 120)	570 (19 600)	570 (12 200)	570 (2 000)
	565 (16 600)	670 (2 680)	· -/	620 (1 400)

^a Units: λ , nm; ε , mol⁻¹ cm².

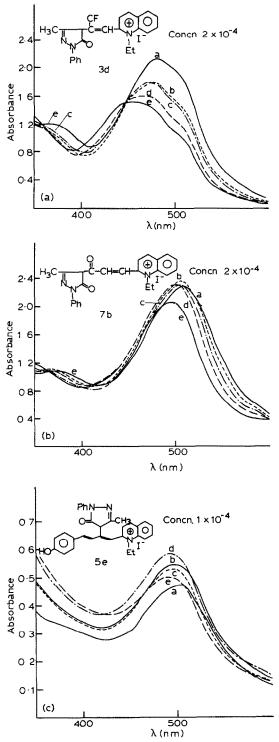


Fig. 1. Electronic absorption spectra of 3d, 5e and 7b in ethanol-water mixtures: a, 0% water; b, 20% water; c, 40% water; d, 60% water; e, 80% water.

from enolization through hydrogen bonding. This results in a more difficult electron transfer from the enolic OH to the heterocyclic quaternary nitrogen as the water content in the medium is increased.

Other evidence for the existence of the compounds in a mesomeric equilibrium is provided by the well-defined isobestic point observed in the spectra in mixed solvents. This is carried out in order to study the hydrogen-bonding solvated complex liable to be formed between the solute molecules and hydrogen bond acceptor solvents. Thus, the visible spectra of compound 3d in CHCl₃ displays two bands (Fig. 2). On adding DMF, the absorbance of the longer-wavelength band (510 nm) is increased as the molarity of DMF is increased, and at the same time the absorbance of the shorter-wavelength band (400 nm) decreases, with a slight blue shift. A fine isobestic point is obtained, indicating the existence of an equilibrium between the solvated complex and the free solute molecules (Fig. 2).

With compound 7b in CHCl₃-EtOH, the absorbance of the longer-wavelength band (515 nm) increases as the molarity of EtOH is increased. At the same time, the absorbance of the shorter-wavelength band (400 nm) decreases with a slight blue shift, and a fine isobestic point is obtained. This behaviour indicates that DMF and EtOH have a greater tendency to form a solvated complex with the solute molecules relative to CHCl₃. This is due to the low ionization potential of DMF and EtOH and to the high hydrogen bond accepting character of 7b.

The charge transfer nature of the transition leading to the band at longer wavelength can be supported by considering the spectral behaviour of the compounds in solutions of varying hydrogen ion concentrations (Fig. 3). It was found that for compounds 3b, 5e and 7b, the band showed largely red shifts in alkaline media. These shifts are mainly due to a relatively increased negative charge density on the enolate OH group in these compounds. On the other hand, the longer-wavelength absorption band of compound 3d ($R = CF_3$) showed a blue shift in alkali. This shift is due to the high electron accepting character of the CF_3 group, which inhibits charge transfer from the enolate OH group to the positively charged heterocyclic quaternary nitrogen.

Similarly, it was found that in compound 5c ($R = N(CH_3)_2$) the band showed a red shift in alkaline media, this shift being due to the relatively increased negative charge density on the alkylamino group. This behaviour can be interpreted on the basis that the dialkylamino group becomes protonated in solutions of low pH and CT interaction within the protonated form is difficult. On the other hand, as the pH of the medium increases, the dialkylamino group becomes deprotonated and therefore its mesomeric interaction with the rest of the molecule increases, and consequently, the CT interaction in the free base is facilitated.

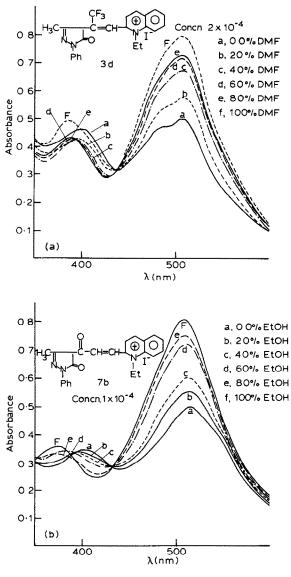
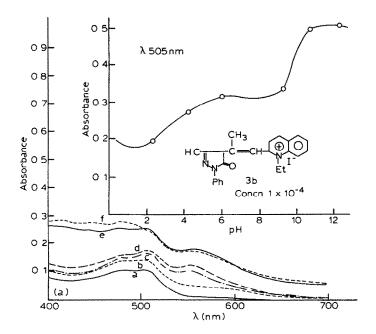



Fig. 2. (a) Electronic absorption spectra of 3d in CHCl₃-DMF mixtures. (b) Electronic absorption spectra of 7b in CHCl₃-ethanol mixtures.

The acid dissociation or protonation constants of selected cyanines (3b, 3d, 5c, 5d and 7b) were determined in order to ensure the optimal pH in the application of these dyes as photosensitizers. The effectiveness of the compounds as photosensitizers increases when they are present in the ionic form, which has a higher planarity. Thus, the absorbance of the CT band in these compounds increases with increasing pH. The variation of absorbance

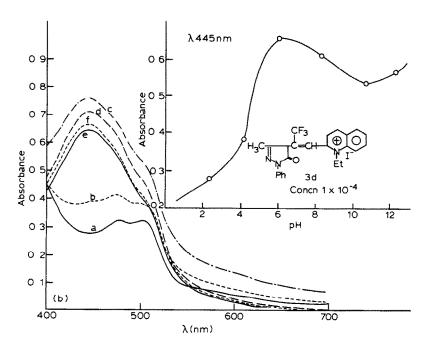


Fig. 3. Electronic absorption spectra of 3b, 3d, 5c, 5e and 7b in universal buffers pH 2·30 (a), 4·24 (b), 5·91 (c), 8·17 (d), 10·60 (e) and 12·16 (f).

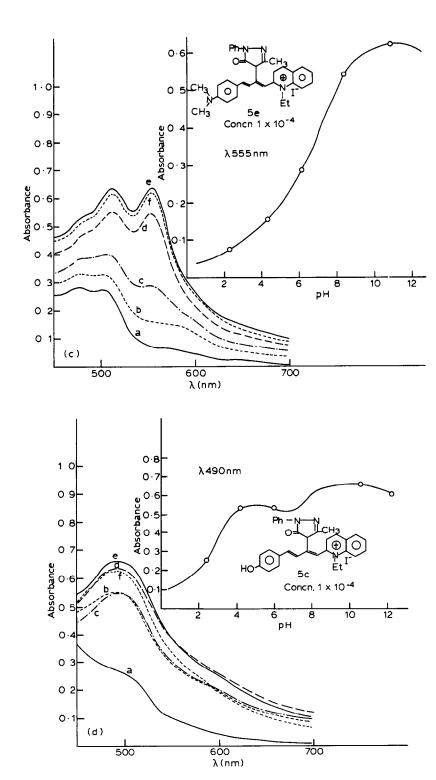
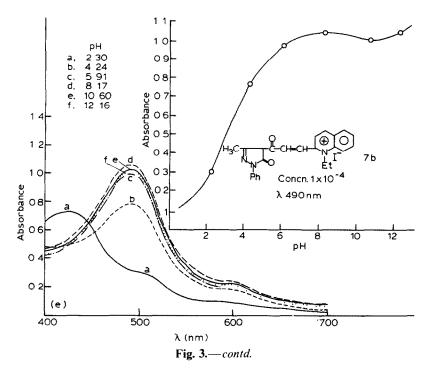



Fig. 3.—contd.

with pH can be utilized for the determination of the ionization constant of the organic compounds. ¹¹ By plotting the absorbance at λ_{max} versus pH, S-shaped curves were obtained. The values are listed in Table 4. The horizontal portion of the S-curve corresponds to the acidic form of the compound, whilst the upper portion to the right corresponds to the basic form, since the pK_a is defined as the pH value for which one-half of the compound is in the

TABLE 4
Electronic Spectra^a at Different pH for Selected $\beta(\gamma)$ -Substituted Styryl Cyanines

3b	3d	5c	5e	MI.	
			36	7b	9 d
		λ,	nax		
05 nm	445 nm	555 nm	490 nm	490 nm	560 nm
0.20	0.28	0.08	0.26	0.31	0.06
0.28	0.39	0.16	0.54	0.78	0.10
0.32	0.76	0.29	0.54	0.99	0.24
0.34	0.71	0.55	0.63	1.06	0.25
0.50	0.64	0.64	0.66	1.02	0.34
0.51	0.67	0.62	0.62	1.06	0.44
	0·28 0·32	0·20 0·28 0·28 0·39 0·32 0·76 0·34 0·71 0·50 0·64	05 nm 445 nm 555 nm 0·20 0·28 0·08 0·28 0·39 0·16 0·32 0·76 0·29 0·34 0·71 0·55 0·50 0·64 0·64	05 nm 445 nm 555 nm 490 nm 0·20 0·28 0·08 0·26 0·28 0·39 0·16 0·54 0·32 0·76 0·29 0·54 0·34 0·71 0·55 0·63 0·50 0·64 0·64 0·66	05 nm 445 nm 555 nm 490 nm 490 nm 0·20 0·28 0·08 0·26 0·31 0·28 0·39 0·16 0·54 0·78 0·32 0·76 0·29 0·54 0·99 0·34 0·71 0·55 0·63 1·06 0·50 0·64 0·64 0·66 1·02

^a Absorbance values at λ_{max}

basic form and the other in the acidic form. This point is determined by the intersection of the curve with a horizontal line midway between the left and right segments. From Fig. 3, the pK_a values are 3.5, 7.5 and 10.0 for 3b; 4.5 and 9.0 for 3d; 7 for 5c; 3.2 and 8.2 for 5e; and 4.2 and 9.3 for 7b.

3 EXPERIMENTAL

3.1 General

Melting points are uncorrected. IR spectra were determined on a Unicam SP1200 spectrophotometer. Absorption spectra were recorded on a Shimadzu UV-Vis 240 recording spectrophotometer and the ¹H-NMR spectra on an EM-390 90 MHz NMR spectrometer. 4-Acetyl-3-methyl-1-phenyl-2-pyrazoline-5-one (2a) and the 4-cinnamoyl derivatives (4a-4e) were prepared according to Ref. 9.

The aqueous universal buffer solutions of pH 2·30–12·20 were prepared as described in Ref. 12, and the pH of the solutions checked at 25°C using an Orion pH-meter model 60/A.

3.2 Trifluoroacetyl- (and benzoyl)-3-methyl-1-phenyl-2-pyrazolin-5-one, 2b and 2c

These compounds were prepared in an analogous manner to 2a.

3.2.1 Compound **2b**

Yield 60%, m.p. 120°C.

C₁₂H₉N₂O₂F₃ Calcd.: C, 52·4; H, 3·3; N, 10·2. Found: C, 52·45; H, 3·4; N, 10·2%.

IR(KBr): v 1740 (C = O), 1560 cm⁻¹ (C = N). ¹H-NMR (CDCl₃/TMS_{int.}): δ 1·6 (s, 3H, CH₃), 7·5 (s, 5H, aromatic), 12·21 ppm (s, 1H, enolate OH).

3.2.2 Compound 2c

Yield 55%, m.p. 95°C.

C₁₇H₁₄N₂O₂ Calcd.: C, 73·4; H, 5·0; N, 10·1.

Found: C, 73.5; H, 5.1; N, 10.1%.

IR (KBr): v 1730 (C=O), 1540 cm⁻¹ (C=N). ¹H-NMR (CDCl₃/TMS_{int}): δ 1·6 (s, 3H, CH₃), 7·8 (m, 1OH, arom.), 12·20 ppm (s, 1H, enolate OH).

3.3 Asymmetrical β -substituted dimethine cyanines (3a-3e)

Equimolar ratios of **2a–2c** and the appropriate 2-methyl quaternary salts (α -picoline, quinaldine, γ -picoline; 0·01 mol), and piperidine (2 ml) in absolute

ethanol (30 ml) were refluxed for 15-20 h. The precipitated products were filtered and recrystallized from ethanol. Relevant data are given in Table 1.

3.3.1 Compound **3b**

IR(KBr): v^{-} 3480 (enolate OH), 2940 (heterocyclic quaternary residue), 1600 (C=C), 1520 cm⁻¹ (C=N). ¹H-NMR (CDCl₃/TMS_{int.}): δ 7·5 (m, 11H, arom., heter.), 12·21 (enolate OH), 1·6 (s, 6H, 2CH₃), 3·3 (s, 1H, olefinic), 2·5 (q, 2H, CH₂), 2·2 ppm (t, 3H, CH₃).

3.4 Asymmetrical β -substituted bis(styryl) cyanines (5a–5e)

These were prepared in an analogous manner to that described above for 3a-3e using 4-cinnamoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (4a-4e)⁹ and the 1-ethyl-2-methylquinolinium-2-yl salt in place of the 4-acetyl derivatives 2a-2c. Data on these compounds are given in Table 1.

3.4.1 Compound 5e

IR(KBr): v 3450 (enolate OH), 2930 (heterocyclic quaternary residue), 1710 (C=O), 1600 (conj. C=C), 1520 cm⁻¹ (C=N). ¹H-NMR (CDCl₃/TMS_{int.}): δ 7·5 (m, 15H atom., heter.), 12·21 (s, 1H, enolate OH), 1·6 (s, 3H, CH₃), 3·4 (d, 2H, olefinic), 2·5 (q, 2H, CH₂), 2·2 ppm (t, 3H, CH₃).

3.5 3-Methyl-1-phenyl-2-pyrazolin-5-one-4-glycosal (6)

A mixture of 2a (2·15 g, 0·01 mol) and selenium dioxide (1·13 g, 0·01 mol) in ethanol (20 ml) was refluxed for 10 h. The mixture was filtered, concentrated and the precipitate obtained on cooling was filtered and recrystallized from ethanol (yield 1·5 g, m.p. 120° C).

C₁₂H₁₁N₂O₃ Calcd.: C, 62·3; H, 4·8; N, 12·1. Found: C, 62·5; H, 4·8; N, 12·2%.

IR(KBr): v 1635 (CHO), 1740 (C=O), 1500 cm⁻¹ (C=N). ¹H-NMR (CDCl₃/TMS_{int}): δ 7·5 (s, 5H, arom.), 1·6 (s, 3H, CH₃), 9·9 (s, 1H, CHO), 12·21 ppm (s, 1H, enolate OH).

3.6 Asymmetrical γ-ketostyryl cyanines (7a-7c)

A solution of 6 2·31 g, 0·01 mol, the appropriate quaternary salt (α -picoline, quinaldine, γ -picoline; 0·01 mol) and piperidine (2 ml) was refluxed in absolute ethanol (25 ml) for 12–15 h. The products were filtered and recrystallized from ethanol. Results are given in Table 2.

3.6.1 Compound **7b**

IR(KBr): v 3440 (enolate OH), 2990 (heter. quaternary residue), 1730 (C=O), 1620 (conj. C=C), 1540 cm⁻¹ (C=N). ¹H-NMR (CDCl₃/TMS_{int}): δ 7·5 (m, 15H, arom., heter.), 12·20 (s, 1H, enolate OH), 1·7 (s, 3H, CH₃), 3·5 (d, 2H, olefinic), 2·5 (q, 2H, CH₂), 2·3 ppm (t, 3H, CH₃).

3.7 3-Methyl-1-phenyl-2-pyrazolin-5-one-4-glycosylidene arylamine derivatives (8a-8c)

A mixture of 6 (2·31 g, 0·01 mol), the appropriate arylamine (aniline, p-anisidine, p-nitroaniline, 0·01 mol) and piperidine (2 ml) was refluxed in absolute ethanol (20 ml) for 8–10 h. The mixture was filtered, concentrated and the products filtered and recrystallized from ethanol. Results are summarized in Table 2.

3.7.1 Compound 8a

IR(KBr): v 3490 (enolate OH), 1720 (C=O), 1520 cm⁻¹ (C=N). ¹H-NMR (CDCl₃/TMS_{int.}): δ 7·6 (m, 10H, arom.), 1·6 (s, 3H, CH₃), 3·4 (s, 1H, olefinic), 12·20 ppm (s, 1H, enolate OH).

3.8 Asymmetrical β -substituted aza bis(styryl) cyanines (9a–9d)

These were prepared in an analogous manner to that described for **5a-5e** using the 3-methyl-1-phenyl-2-pyrazolin-5-one-4-glycosylidene arylamine derivatives **8a-8c** and the 1-ethyl-2-methylquinolinium-2-yl salt (equimolar ratios, 0.01 mol) in place of the 4-cinnamoyl derivatives **4a-4e**. Results are given in Table 2.

3.8.1 Compound **9a**

IR(KBr): v 3500 (enolate OH), 2940 (heter. quaternary residue), 1710 (C=O), 1620 (conj. C=C), 1520 cm⁻¹ (C=N). ¹H-NMR (CDCl₃/TMS_{int.}): δ 6·95 (m, 16H, arom., heter.), 12·25 (s, 1H, enolate OH), 1·2 (t, 3H, CH₃), 0·95 (s, 3H, CH₃), 3·4 (d, 2H, olefinic), 2·5 ppm (q, 2H, CH₂).

REFERENCES

- 1. Osman, A. M. & Khalil, Z. H., J. Appl. Chem. Biotechnol., 25 (1975) 683.
- 2. Ilford, British Patent 7,971,044 (1935).
- 3. Opanasenko, E. P., Palli, G. K. & Prisyazhnyuk, P. V., Khim. Farm. Zh., 8 (1974)
- 4. Eastman Kodak Co., US Patent 4 232 121 (1980).

- 5. Eastman Kodak Co., US Patent 4 226 868 (1980).
- 6. Terutaro, O., Reports Sci. Res. Inst., Japan, 29 (1953) 507.
- Abdou, R. F., Waly, E. A., Abdel Aal, S. A. & Khalil, Z. H., Assiut J. Agric. Sci., Egypt, 14 (1983) 415.
- 8. Abdou, R. F., Omara, M. K., Hussein, M. Y. & Khalil, Z. H., Assiut J. Agric. Sci., Egypt, 13 (1982) 117.
- Mohanty, S. K., Sridhar, R. & Padmanavan, S. Y., *Indian J. Chem.*, 15B (1977) 1146.
- 10. Koraiem, A. I. M., J. Appl. Chem. Biotechnol., 34A (1984) 43.
- 11. Bassioni, I., MSc Thesis, Assiut University (1960), p. 70.
- 12. Britton, H. T. S., *Hydrogen Ions*, 4th edn. Chapman and Hall, London, 1952, p. 313.